Ferguson, G., Gallagher, J. F., Glidewell, C. \& Zakaria, C. M. (1993). Acta Cryst. C49, 967-971.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gallagher, J. F., Ferguson, G., Glidewell, C. \& Zakaria, C. M. (1994). Acta Cryst. C50, 18-23.
Gallagher, J. F., Kenny, P. T. M. \& Sheehy, M. J. (1999). Inorg. Chem. Commun. 2, 200-202.
Gallagher, J. F. \& Moriarty, E. M. (1999). Acta Cryst. C55, 10791082.

Glidewell, C., Ahmed, S. Z., Gallagher, J. F. \& Ferguson, G. (1997). Acta Cryst. C53, 1775-1778.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kingston, J. E., Ashford, L., Beer, P. D. \& Drew, M. G. B. (1999). J. Chem. Soc. Dalton Trans. pp. 251-257.
Kraatz, H.-B., Lusztyk, J. \& Enright, G. D. (1997). Inorg. Chem. 36, 2400-2405.
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.
Moore, A. J., Skabara, P. J., Brycc, M. R., Batsanov, A. S., Howard, J. A. K. \& Daley, S. T. A. K. (1993). J. Chem. Soc. Chem. Commun. pp. 417-419.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G., \& Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz, Appendix A. Weinheim: VCH Publishers.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. Version of November 1998. University of Utrecht, The Netherlands.

Acta Cryst. (1999). C55, 1260-1262

Sodium (nitrilotriacetato)magnesate pentahydrate

Masami Kaneyoshn, \dagger Andrew Bond and William Jones
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England. E-mail: adb29@cam. ac.uk
(Received 8 February 1999; accepted 1 April 1999)

Comment

Nitrilotriacetic acid (NTA) is found as a multidentate ligand in many metal-chelate compounds (SkrzypczakJankun \& Smith, 1994; Martell, 1975). A magnesiumchelated NTA complex has been proposed recently as a guest species within a layered double hydroxide (Kaneyoshi \& Jones, 1999). The crystal structure of the title compound, (I), contains Mg atoms chelated by NTA molecules via three $\mathrm{Mg}-\mathrm{O}$ bonds [2.042 (2)-2.096 (2) \AA] and one $\mathrm{Mg}-\mathrm{N}$ bond [Mg1N1 $2.232(2) \AA$]. In addition, each Mg atom is bound to one O atom of a neighbouring NTA molecule [Mg 1 O5 2.029 (2) \AA; symmetry code: (i) $\left.2-x, y-\frac{1}{2}, \frac{3}{2}-z\right]$ and one O atom of a water molecule [$\mathrm{Mg} 1-\mathrm{O} 7$ 2.066 (2) Å], resulting in a distorted octahedral coordination geometry. The Na atoms are also octahedrally coordinated by four O atoms of different NTA molecules [2.385 (2)-2.453 (2) \AA] and two O atoms of water molecules [$\mathrm{Na} 1-\mathrm{O} 82.402$ (2) and $\mathrm{Na} 1-\mathrm{O} 92.331$ (2) \AA].

(I)

The three carboxylate groups of each NTA molecule adopt different bonding patterns. The first ($\mathrm{C} 2, \mathrm{Ol}$ and O 2) binds to the chelated Mg atom and one Na atom via O 2 , and is involved in interlayer hydrogen bonding through $\mathrm{O} 1\left[\mathrm{Ol}^{\mathrm{ii}} \ldots \mathrm{O} 82.762(3) \AA\right.$ and $\mathrm{Ol}^{\mathrm{ii}} \ldots \mathrm{H} 8 \mathrm{~A}-$ O8 $167(3)^{\circ}$; symmetry code: (ii) $2-x, \frac{1}{2}+y, \frac{3}{2}+z$]. The second (C4, O3 and O4) binds to one Mg atom and one Na atom via O 3 and O 4 , respectively. In the third carboxylate group (C6, O5 and O6), O5 and O6 each bind to both an Mg atom and an Na atom, acting as bridges between adjacent $\mathrm{MgNa}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ units.

The interactions between the metal atoms and the NTA ligands, together with hydrogen-bonding interactions, give rise to infinite $\mathrm{MgNa}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ lay-

Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.
ers parallel to the (001) plane (Fig. 2). Adjacent layers are bound via hydrogen bonds (Table 2) with two water molecules which are not coordinated to any metal atom (O10 and O11).

Fig. 2. View of the (001) plane, showing an infinite $\mathrm{MgNa}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ layer. H atoms and interlayer water molecules have been omitted.

The structure of $\mathrm{NaMg}(\mathrm{NTA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ may be compared with those of other M^{II} analogues reported previously. In $\mathrm{NaCu}(\mathrm{NTA}) \cdot \mathrm{H}_{2} \mathrm{O}$, the Cu atoms are also octahedrally coordinated, but in this case, solely by N and O atoms of NTA ligands (without any coordinated water molecules) (Whitlow, 1973). In $\mathrm{NaCa}(\mathrm{NTA})$, each Ca atom adopts sevenfold coordination via one tetradentate NTA molecule and the O atoms of three neighbouring NTA molecules (Barnett \& Uchtman, 1979). The differences between the structures of these compounds and that of the title compound may be attributed to the amount of water of crystallization.

Experimental

Single crystals of the title compound were grown by slow vapour diffusion of acetone into an aqueous solution of $\mathrm{Na}_{3}(\mathrm{NTA}), \mathrm{H}_{3}(\mathrm{NTA})$ and $\mathrm{Mg}(\mathrm{OH})_{2}$ in stoichiometric amounts at approximately 278 K .

Crystal data

$\left[\mathrm{MgNa}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]--$	$\mathrm{Cu} K \alpha$ radiation
$2 \mathrm{H}_{2} \mathrm{O}$	$\lambda=1.54178 \AA$
$M_{r}=325.50$	Ceil parameters from 25
Orthorhombic	reflections
Pbca	$\theta=32.2-49.6^{\circ}$

$a=14.623$ (7) \AA
$b=9.729(5) \AA$
$c=19.228(10) \AA$
$V=2735(2) \AA^{3}$
$Z=8$
$D_{x}=1.581 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Stoe Stadi-4 four-circle diffractometer
$\omega-\theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.522, T_{\text {max }}=0.798$
3421 measured reflections
1718 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.077$
$S=1.062$
1718 reflections
212 parameters
H atoms treated by a mixture of independent and constrained refinement $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0376 P)^{2}\right.$ $+0.7644 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected bond lengths (\AA)

$\mathrm{MgI}-\mathrm{OF}^{\text {i }}$	2.0292 (18)	Nal-O9	2.331 (2)
$\mathrm{Mg} 1-\mathrm{O} 3$	2.0420 (17)	Na --O6	2.385 (2)
$\mathrm{Mg1-07}$	2.0660 (19)	$\mathrm{Nal}-\mathrm{O} 8$	2.402 (2)
$\mathrm{Mg1}-\mathrm{O} 2$	2.0773 (18)	$\mathrm{Na} 1-\mathrm{O} 2^{\text {i1 }}$	2.415 (2)
$\mathrm{Mg1-06}$	2.0964 (18)	$\mathrm{Na} 1-\mathrm{O} 4^{\text {+1 }}$	2.4471 (19)
Mg 1 - Nl	2.232 (2)	Nal-O5'	2.4526 (19)

Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iii) $\frac{1}{2}+x, y, \frac{3}{2}-z$.

Table 2. Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$)

$D-\mathrm{H} \cdot \cdots \mathrm{A}$	D-H	H... A	D. . A	D-H. . A
O7-H7B . . 4 1	0.84 (3)	1.93 (3)	2.758 (3)	165 (3)
O7-H7A . . $\mathrm{O}^{\prime \prime}$	0.88 (3)	1.91 (3)	2.783 (3)	173 (3)
O8- $\mathrm{H} 8 \mathrm{~B} \cdot \mathrm{O} \mathrm{Ol}^{1 \mathrm{iin}}$	0.83 (3)	2.14 (3)	2.904 (3)	153 (3)
O8- $\mathrm{H} 8 \mathrm{~A} \cdot \cdots \mathrm{Ol}^{16}$	0.90 (4)	1.88 (4)	2.762 (3)	167 (3)
O9- $\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{Ol}^{*}$	0.86 (3)	1.91 (3)	2.746 (3)	162 (3)
$\mathrm{Ol}-\mathrm{HIOB} \cdots \mathrm{Ol}^{\text {i }}$	0.80 (3)	2.07 (3)	2.863 (3)	177 (3)
$\mathrm{OlO}-\mathrm{HIOA} \cdots \mathrm{Oll}{ }^{v_{1}}$	0.93 (4)	1.89 (4)	2.821 (3)	172 (2)
O9-H9A.. O10	0.84 (3)	1.94 (3)	2.771 (3)	173 (3)
Oll-H1lA . . O3	0.92 (3)	1.90 (3)	2.792 (3)	165 (3)

Symmetry codes: (i) $\frac{1}{2}+x, y, \frac{3}{2}-z$; (ii) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $\frac{3}{2}-x, \frac{1}{2}+y, z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $2-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (vi) $2-x,-y, 2-z$.
All H atoms of the CH_{2} groups were positioned geometrically ($\mathrm{C}-\mathrm{H} 0.99 \AA$) and refined using a riding model with the $U_{\text {iso }}$ values for each H atom taken as $1.2 U_{\text {eq }}$ of the carrier atom. Water H atoms were located in difference Fourier maps and refined with a fixed isotropic displacement parameter of $0.05 \AA^{2}$. The attachment of a low-temperature device to the diffractometer prohibited collection of data to a higher angle.

Data collection: DIF4 (Stoe \& Cie, 1992a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1992b). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: XP in SHELXTLPC (Sheldrick, 1994) and CAMERON (Pearce et al., 1993). Software used to prepare material for publication: SHELXL97.

The authors would like to thank Shin-Etsu Chemical Co. Ltd for granting study leave to MK, the EPSRC and Zeneca Specialties for funding (AB), and Dr Neil Feeder for assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1309). Services for accessing these data are described at the back of the journal.

References

Barnett, B. L. \& Uchtman, V. A. (1979). Inorg. Chem. 18, 2674-2678.
Kaneyoshi, M. \& Jones, W. (1999). J. Mater. Chem. 9, 805-811.
Martell, A. E. (1975). Pure Appl. Chem. 44, 81-113.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pearce, L. J., Watkin, D. J. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Skrzypczak-Jankun, E. \& Smith, D. A. (1994). Acta Cryst. C50, $1097-$ 1099.

Stoe \& Cie (1992a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1992b). REDU4. Data Reduction Program. Version 7.03. Stoe \& Cie, Darmstadt, Germany.
Whitlow, S. H. (1973). Inorg. Chem. 12, 2286-2289.

Acta Cryst. (1999). C55, 1262-1263

Dichlorobis(1-methyl-1 H-benzimidazole- N^{3})cobalt(II)

Yongku Shan, ${ }^{a}$ Mayra E. Cádiz, ${ }^{b}$ Pedro L. Sánchez ${ }^{b}$ and Songring D. Huang ${ }^{a}$

${ }^{a}$ Department of Chemistry, University of Puerto Rico, San Juan, PR 00931, USA, and ${ }^{b}$ Department of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA. E-mail: shuang1@kent.edu
(Received 13 July 1998; accepted 6 April I999)

Abstract

The metal atom in the title complex, $\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, has a slightly distorted tetrahedral coordination involv-

ing two Cl^{-}ions and two N atoms from the aromatic groups. The dihedral angle between the planes of the two 1-methylbenzimidazole ligands is $117.7(7)^{\circ}$.

Comment

Benzimidazoles are an important class of compounds in biological systems and in coordination chemistry. This fused two-ring system occurs in many biologically active compounds, such as antinematodal and antitumor drugs. It also appears to bind to cobalt in vitamin B12. Metal complexes with benzimidazoles have been investigated in the search for new modes of biological activity (Allan et al., 1981; Golič \& Mirčeva, 1988). In order to investigate the role of the 1 -alkyl substituent of benzimidazole in the coordinating behavior of this ligand, we have synthesized $\mathrm{Co}^{\mathrm{II}}$ complexes of the type $\mathrm{CoX}_{2}\left(L_{2}\right)$, where $X=\mathrm{Cl}^{-}$or NO_{3}^{-}and $L=1$-methylbenzimidazole, 1,2-dimethylbenzimidazole, 1-isopropyl-2-methylbenzimidazole or 2-methyl-1-propenylbenzimidazole. In addition, the effect of the 1 -alkyl group upon the donor and acceptor ability of benzimidazole is of special interest with regard to the electrochemical properties of the $\mathrm{Co}^{\mathrm{II}}$ complexes. The title compound, (I), has been synthesized as a simple model for complexes with increased steric hindrance in the vicinity of the coordinating N atom of benzimidazole.

(I)

The X-ray crystallographic analysis of (I) revealed that the $\mathrm{Co}^{\mathrm{II}}$ ion has a slightly distorted tetrahedral coordination, involving two Cl^{-}ions and two N atoms

Fig. 1. An ORTEP (Johnson, 1965) representation of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

